NASA

DAG-TM CE Overview

List of Concept Elements

Over-arching

Gate-to-Gate:

CE-0 Data Exchange

Pre-flight

Pre-flight Planning:

CE-1 User optimization for Constraints

Flight Operations

Surface Departure:

CE-2 Intelligent [Taxi] routing

Terminal Departure:

- CE-3 Free Maneuvering for Separation
- CE-4 Trajectory Negotiation for Separation

En route: (Separation and local-TFM Conformance)

- CE-5 (a/b) Free Maneuvering
- CE-6 (a/b) Trajectory Negotiation

En route: (local-TFM)

CE-7 Collaboration for SUA/Wx/Complexity

En route / Terminal: (local-TFM)

CE-8 Collaboration for Arrival Metering

Terminal Arrival:

- CE-9 Free Maneuvering Around Weather
- CE-10 Trajectory Up link [to avoid] Weather

Terminal Arrival:

- CE-11 Self Spacing for Accurate Merge
- CE-12 Trajectory Exchange for Accurate Merge

Terminal Approach:

CE-13 Closely Spaced Approaches

Surface Arrival:

CE-14 Intelligent [Taxi] Routing

Research Prioritization for AATT

Out of 15 Concept Elements, 4 were selected and recommended for research

Selection rationale:

- 1. The element focus is long-term, high-risk research TRL 1-4.
- 2. The element focus is largely on DAG-TM.
- 3. The element is essential to a cohesive DAG theme.
- 4. There is a reasonable likelihood of reaching TRL 4 by FY03.
- 5. There is an identified gap in existing government research.
- 6. The element is likely to provide benefits that enable user preferences and/or increase capacity.

Technology Readiness Levels (TRL) defined by AATT:

TRL 1: Initial Concept Development

TRL 2: Proof of Concept Plan

TRL 3: Proof of Concept Activities

TRL 4: Research Prototype Development

Detailed Concept Element (CE) Descriptions

En route:

- (a) Separation assurance & (b) Flow-rate Conformance[Departure, Cruise, and Arrival]
 - CE-5 Free Maneuvering
 - CE-6 Trajectory Negotiation
- Local Traffic Flow Management (TFM) [Departure, Cruise, and Arrival]
 - CE-7 Collaboration for Mitigating Local-TFM Constraints Due to Weather, Special Use Airspace (SUA), and Airspace Complexity (Congestion)

Terminal:

- Spacing Management (TFM) [Arrival]
 - CE-11 Self Spacing for Merging and In-Trail Separation

CE-5: En Route Free Maneuvering

Presented by David J. Wing

En Route (& Transition): Free Maneuvering

for Separation and User-preferred Local-TFM Conformance

Problem:

ATSP cannot accommodate trajectory change requests due to workload; and ATSP-issued clearances often cause excessive deviations for separation assurance or are otherwise not preferred by users

Solution:

- <u>Air</u>: Equipped aircraft maneuver freely for separation & local-TFM conformance
 - » Trajectories account for the latest weather, SUA, and local TFM constraints for airport/airspace capacity (e.g., scheduled time-of-arrival (STA))
- Ground: ATSP establishes any necessary flow constraints (e.g., STA), and:
 - » Monitors the traffic situation and provides advisories as necessary
 - » Assures separation and local-TFM conformance for unequipped aircraft

Potential Benefits:

- Increased safety in separation assurance
- Increased user flexibility / efficiency (preferred trajectory)
- Increased user flexibility/efficiency in the presence of dynamic constraints
- Reduced ATSP workload
- Reduced excess separation buffers
- Reduced voice communications
 Free Flight DAG-TM Workshop, NASA Ames, May 22-24

Technical Challenges of Distributed Air/Ground Traffic Management

- Most CONUS Airspace either constrained or transitional
 - Solution to unconstrained problem not sufficient
 - Separation assurance and 4D local traffic flow management are interdependent
- Universal access requires mixed-equipage operations
 - Preserve participation with current equipage
 - Requires equitable integration with incentives to equip
- Technology development is required to enable concept
 - Compatible air/ground decision-aiding automation
 - Distributed decision-making concept requires human-centered design of technology and procedures
 - Comm, nav, & surveillance infrastructure performance standards are concept-dependent

Constrained Airspace Challenges

Plan across multiple sectors and multiple facilities.

- involving several human planners
- using best available information

Maintain passenger comfort Lòcal Departure Sector 1 Reroute around weather & restricted airspace while avoiding bottlenecks

Maintain separation with other aircraft, which may have significantly different performance and navigation capability

Transitional Airspace Challenges

CE-5 Fundamentals: Varied Aircraft Equipage

"Autonomous" aircraft

- Voluntarily equipped for flight crew situation awareness & control
 - Airspace / traffic display
 - Hazard prediction and alerting
- Voluntarily equipped to receive and analyze local data
 - Traffic aircraft, state and intent
 - ATC "constraints" (flow-rate conformance, sequence, airspace, other)
 - Airspace data: NAS status, wx regions
- Voluntarily equipped to calculate and execute trajectory options that meet -
 - Traffic separation standards
 - Airspace and ATC-issued constraints
 - Performance limitations
 - User preferences & goals

"Managed" aircraft

- May or may not have air-ground data link to receive ATC clearances
- May or may not have airspace / traffic display
- Must broadcast ownship state data (minimum)

CE-5 Fundamentals: Integrated Operations

- Airspace contains mix of autonomous and managed aircraft
 - Equal access, no segregation (hypothesis)
 - Traffic management is distributed <u>twice</u>
 - · Airborne: distributed among autonomous aircraft
 - Air / ground: distributed by aircraft equipage
- Flight rules for conflict resolution / avoidance, incentive to equip
 - Priority rules: emergency status, maneuverability, equipage level (hypothesis)
 - Maneuver rules

CE-5 Fundamentals: Modified Roles & Responsibilities

- ATC issues "constraints" to autonomous aircraft
 - Flow-rate (required time of arrival at fix)
 - Sequence (aircraft to follow)
 - Airspace (SUA or congested regions)
 - Others (noise abatement, wx impact, speed restriction)
- Autonomous aircraft generates / executes trajectory
 - Ensures traffic separation standards are met
 - Satisfies ATC-issued constraints
 - Conforms to priority / maneuver flight rules
 - Within aircraft performance limitations
 - Optimized for user preferences & goals
- ATC issues trajectory clearances to managed aircraft
 - Ensure separation of managed aircraft from other aircraft
 - Achieve flow management goals for managed aircraft
- Managed aircraft executes "cleared" trajectory

CE-5 Fundamentals: Information Exchange

Resolution Strategy a Function of Time

Summary of CE-5 Unique Features

- Responsibility for safe and efficient operation of the NAS is distributed between flight crews and ATSP
- Authority for autonomous operations, and <u>responsibility for</u> <u>separation assurance</u>, delegated to aircraft that voluntarily equip with flight deck intelligent decision aids (→ "autonomous" aircraft)
 - Autonomous aircraft receive constraints from ground-based systems (e.g., required time of arrival at a fix, SUA avoidance) and are allowed to self-optimize their flight paths to meet those constraints
- ATSP provides separation and flow management for all other (IFR)
 aircraft (→ "managed" aircraft) with the assistance of controller
 intelligent decision aids
- Autonomous and managed aircraft operations are integrated in airspace

CE-11: Terminal Arrival Self-Spacing for Merging and In-Trail Separation

Presented by David J. Wing

Terminal Arrival: Self Spacing for Merging and In-Trail Separation

Problem:

Excessive spacing buffers on final approach reduce arrival throughput and airport capacity

Solution:

- Appropriately equipped aircraft are cleared to maintain separation relative to a leading aircraft:
 - flight deck displays and guidance for:
 - Merging and self-spacing
 - Fine tuning of fixed-time spacing
- ATSP displays & procedures for monitoring

Potential Benefits:

- Increased arrival throughput
- Enhanced ATSP & pilot shared understanding of traffic management plan

CE-11: Three Phases of Operations

- Phase 1: Spacing
 - Fixed route, in-trail
 - ATM provides spacing interval, manages unequipped aircraft
 - Airborne responsibility for spacing maintenance
- Phase 2: Merging
 - Fixed routes, merging streams
 - ATM provides sequence and spacing, manages unequipped aircraft
 - Airborne responsibility for merging and spacing
- Phase 3: Maneuvering
 - Fixed arrival corridors
 - ATM permits maneuvering within corridors
 - Airborne responsibility for remaining within corridor

Phase 1: Spacing

Terminal Arrival Self-Spacing for Merging and In-Trail Separation

Phase 1

Phase 2: Merging

Terminal Arrival Self-Spacing for Merging and In-Trail Separation

Phase 2

Phase 3: Maneuvering

Terminal Arrival Self-Spacing for Merging and In-Trail Separation

Phase 3

CE-11 Characteristics

- Applicable to instrument and visual approaches
- Applicable to mixed equipage operations
- Applicable to segregated performance operations
- Manual or auto-flight implementation
- Mechanism for controlling inter-arrival variability
- Maneuvering flexibility for pilot to meet merging/spacing objectives
- Maneuvering flexibility for aircraft to possibly avoid local convective weather